KEYWORDS

Algebra
Expand
Evaluate
Expression
Formula
Indices

Patterns
Power
Pronumerals
Relationship
Simplify
Substitution

Number Patterns and Pronumerals

The study of number patterns is very important in the understanding of pronumerals.

1 By considering the pattern below, made of matchsticks, complete the table.

	-				•				_
Number of squares	1	2	3	4	5	6	7	8	9
Number of matchsticks									

- 2 In your own words, write a rule that relates the number of matchsticks needed to build the pattern to the number of squares.
- 3 If *N* stands for the number of matchsticks used to create *S* squares in the pattern, write the rule in Question 2 using pronumerals.
- 4 Using the rule, find the number of matchsticks needed to create 30 squares.

5 Using the rule, find the number of squares created if 240 matchsticks are used.

Number of squares	1	2	3	4	5	6	7	8	9
Number of matchsticks	4	8	12	16	20	24	28	32	36

2 Number of matchsticks

1

3

= $4 \times$ number of squares in the pattern

$$N = 4 \times S$$

where N = number of matchsticks and S = number of squares.

- 4 Using the rule found in Question 3, substitute S = 30 and find N.

 $N = 4 \times S$ $= 4 \times 30$ = 120

Therefore, 120 matchsticks are needed to build a pattern with 30 squares.

5 Using the rule found in Question 3, substitute N = 240 and find S.

$$N = 4 \times S$$
$$240 = 4 \times S$$
$$S = 60$$

Therefore, 60 squares can be built with 240 matchsticks.

Note:

- *N* and *S* are called **pronumerals**.
- Pronumerals stand for numerals. In the above example, the pronumeral N stands for the number of matchsticks and S stands for the number of squares.
- In algebra, a rule is called a formula. For the above example, the formula is N = 4 × S, where N stands for the number of matchsticks used in the pattern and S stands for the number of squares.

120 Excel Mathematics Study Guide Year 7

Find a formula relating *x* and *y* in the following pattern:

x	1	2	3	4	5
y	3	5	7	9	11

It is observed that 'to obtain the number in the second row you need to multiply the number in the first row by 2 and then add 1', as follows:

æ	1	2	3	4	5
H	3	5	7	9	11
	3 =	5 =	7 =	9 =	11 =
	1 × 2 + 1	$2 \times 2 + 1$	$3 \times 2 + 1$	$4 \times 2 + 1$	$5 \times 2 + 1$

Therefore, the rule is $y = 2 \times x + 1$.

1 Complete the table using the formula $N = 3 \times t - 1$:

t	1	2	3	4	5
N					

1

When

t = 1,	$N=3\times 1-1=2$
t = 2,	$N=3\times 2-1=5$
t = 3,	$N=3\times3-1=8$
t = 4,	$N=3\times 4-1=11$
t = 5,	$N = 3 \times 5 - 1 = 14$

Therefore, the completed table is as follows:

t	1	2	3	4	5
Ν	2	5	8	11	14

Definition

A pronumeral represents a number and may take any numerical value. For example, x = 2 and y = 5.

Operations on Pronumerals

The four operations of arithmetic $(+, -, \times \text{ and } \div)$ have the same meaning in algebra as they have in arithmetic:

- a + b means the **sum** of the numbers represented by the pronumerals aand b. The actual value of a + b can be found only if the values of a and b are known. If a = 7 and b = 3 then a + b = 7 + 3 = 10.
- a-b means the **difference** of the numbers represented by the pronumerals *a* and *b*. The value of a-b can be found only if the values of *a* and *b* are known. If a = 10 and b = 6 then a-b = 10-6 = 4.
- *ab* means the **product** (i.e. $ab = a \times b$) of the numbers represented by the pronumerals *a* and *b*. The value of *ab* can be found only if the values of *a* and *b* are known. If a = 2 and b = 6 then $ab = 2 \times 6 = 12$.
- $\frac{a}{b}$ means the quotient (i.e. $\frac{a}{b} = a \div b$) of the numbers represented by the pronumerals a and b. The value of $\frac{a}{b}$ can be found only if the values of a and b are known. If a = 12and b = 4 then $\frac{a}{b} = a \div b = \frac{12}{4}$ $= 12 \div 4 = 3$.

Note: *ab* is the shorthand way of writing $a \times b$ (that is, $a \times b = ab$). $\frac{a}{b}$ means $a \div b$ (that is, $\frac{a}{b}$) $= a \div b$). *ab* is called the simplified form. $a \times b$ is called the expanded form.

Chapter 7—Algebra 121

Multiplication of Pronumerals

When multiplying pronumerals, the multiplication sign, \times , is often omitted.

For example, $a \times b$ is written as ab $4 \times a = 4a$ $a \times b \times c = abc$

Simplify the following algebraic expressions:

1	$3 \times b$	2 <i>a</i> × 5
3	$2 \times a \times b$	4 5 <i>a</i> × 2 <i>b</i>
5	$a \times a$	$\boldsymbol{6} b \times 3a \times 4$
7	$3 \times a \times 2a$	
1	1	Omit the multiplication sign. Note the number is always written first.
2	$a \times 5 = 5a$ A	lways write the number first.]
3	$2 \times a \times b = 2ab$	This expression could be written as $2ba$ because $ab = ba$.
4	$5a \times 2b = 10ab$	$5 \times 2 = 10$, $a \times b = ab$. Multiply the numbers first and then write the letters.
5	$a \times a = a^2$	$\begin{bmatrix} a \times a \text{ is not written} \\ as aa \text{ but as } a^2. \end{bmatrix}$
6	$b \times 3a \times 4 = 12b$	Da _
7	$\begin{bmatrix} \text{Rem}_{be w} \\ \text{Be w} \end{bmatrix}$	$a = ba$, $3 \times 4 = 12$ ember this expression could rritten as $12ab$ since $ba = ab$.
		a^2 and not <i>aa</i> .

Write the following expressions in expanded form:

1	4 <i>b</i>	2	3abc	3	3 <i>b</i> ²
4	ab²c	5	$(2a)^2$		

- 1 $4b = 4 \times b$
- **2** $3abc = 3 \times a \times b \times c$
- $3 \quad 3b^2 = 3 \times b \times b$
- $4 \quad ab^2c = a \times b \times b \times c$
- $5 \quad (2a)^2 = 2a \times 2a = 2 \times a \times 2 \times a$

Substitution in Algebraic Expressions

In substitution we replace the pronumeral with its numerical value (which must be given) and find the value of an arithmetic expression.

Survey C		
	For Example	
a A		

If a = 2, b = 4 and c = 5 evaluate:

1	ab	2 <i>a</i> + <i>b</i>
3	$\frac{b}{2}$	4 c – a
	2b – c	6 abc
7	3a ²	$8 \frac{2b+4}{a}$
9	c(b-a)	
1	$ab = a \times b$ $= 2 \times 4$ $= 8$	$\begin{bmatrix} ab = a \times b. \end{bmatrix}$ Remember that $a = 2$ and $b = 4$.
2	a + b = 2 + 4 = 6	

122 Excel Mathematics Study Guide Year 7

3
$$\frac{b}{2} = \frac{4}{2}$$

$$= 4 + 2$$

$$= 2$$
4
$$c - a = 5 - 2$$

$$= 3$$
5
$$2b - c = 2 \times b - c$$

$$= 2 \times 4 - 5$$

$$= 3$$
6
$$abc = a \times b \times c$$

$$= 2 \times 4 \times 5$$

$$= 3$$
6
$$abc = a \times b \times c$$

$$= 2 \times 4 \times 5$$

$$= 40$$
7
$$3a^{2} = 3 \times a \times a$$

$$= 12$$
8
$$\frac{2b + 4}{a} = \frac{2 \times b + 4}{a}$$

$$= \frac{12}{2}$$

$$\begin{bmatrix} 12 \\ 2 \\ means 12 + 2 \\ = 5 \\ = 10 \end{bmatrix}$$
For Example
1 If K = 4a^{2}, find the value of K when a = 3.
1 K = 4a^{2}, find the value of K when a = 3.
1 K = 4a^{2}
$$= 4 \times a \times a$$

$$= 4 \times 3 \times 3$$

$$= 36$$
For Example

Substitution into Simple Formulae

the value of one of the pronumerals can be build by substituting numbers for the other commerals.

$$\begin{array}{ll}
x = ut + \frac{1}{2}at^{2} \\
= 12 \times 3 + \frac{1}{2} \times 8 \times 3^{2} \\
= 12 \times 3 + \frac{1}{2} \times 8 \times 9 \\
= 36 + 36 \\
= 72
\end{array}$$

Like Terms

Like terms have the same pronumeral or pronumeral parts. For example, x, -5x, 4x and 20x are like terms.

find P.

Like Terms of an Expression

An expression such as 2x + 3y + 3t has 3 terms. Similarly, $5x + 3x^2$ has 2 terms. Like terms of an expression are those that have the same pronumeral parts. For example, the expression 5x + 3y + 2x + 4x has 4 terms. 5x, 2x and 4xare like terms of the expression. The following are examples of groups of like terms: $\{3y, y, -2y\}$, $\{ab, ba, 3ab\}$, $\{2x^2, -7x^2, 3x^2\}$. Similarly, 5x, 3y, -2t are unlike terms since their pronumeral parts are all different.

Collecting Like Terms

When adding or subtracting pronumerals, only like terms can be added or subtracted.

Simplify the following:

2
$$6a + 2b + 2a + 7b$$

5
$$5x^2 + 3x - 2x^2 + x$$

6
$$4t + k - 3t + 3k$$

$$1 \quad 3a+2a+a=6a$$

$$2 \quad 6a + 2b + 2a + 7b = 8a + 9b$$

This expression could be rearranged so that like terms are grouped together.

a = 1a(3 + 2 + 1)a

$$6a + 2b + 2a + 7b = (6a + 2a) + (2b + 7b)$$
$$= 8a + 9b$$

3
$$7t - t = 7t - 1t$$
 $[t = 1t]$

4
$$4ab - 2ba = 2ab$$
 $ab = ba$, therefore $4ab$
and $2ba$ are like terms.

5
$$5x^2 + 3x - 2x^2 + x = (5x^2 - 2x^2) + (3x + x)$$

= $3x^2 + 4x$

Grouping like terms together: x^2 and x are unlike terms.

$$6 \quad 4t + k - 3t + 3k = (4t - 3t) + (k + 3k)$$

Grouping like terms.

= t + 4k

Indices (Extension)

Index Notation

 $a \times a$ is written as a^2 (*a* is squared) $a \times a \times a$ is written as a^3 (*a* is cubed) $a \times a \times a \times a$ is written as a^4

(it is a to the power of 4)

Note
$$a^m = \underbrace{a \times a \times a \times ... \times a}_{m \text{ times}}$$
 (it is called
the *m*th
power of *a*)

In the expression a^m the *m* is called the **index** or **power**. The plural of index is **indices**.

1 Evaluate:

a 2^3 **b** 12^2 **c** 3^4

- 2 Write the following expressions in index form:
 - a $5 \times 5 \times 5 \times 5$
 - **b** $b \times b \times b \times a \times a$
 - **c** $3 \times a \times a \times a \times b \times b \times b \times b \times b$
- **1 a** $2^3 = 2 \times 2 \times 2 = 8$
 - **b** $12^2 = 12 \times 12 = 144$
 - $\mathbf{C} \quad \mathbf{3}^4 = \mathbf{3} \times \mathbf{3} \times \mathbf{3} \times \mathbf{3} = \mathbf{81}$

- 2 a $5 \times 5 \times 5 \times 5 = 5^4$
 - **b** $b \times b \times b \times a \times a = b^3 a^2$ or $a^2 b^3$
 - **c** $3 \times a \times a \times a \times b \times b \times b \times b \times b = 3a^3b^5$

Carrys of Indices

The multiplying, add indices. When but subtract indices:

- $\blacksquare \quad a^m \times a^n = a^{m+n}$
- $a^m \div a^n = a^{m-n}$
- $(a^m)^n = a^{mn}$
- $(ab)^m = a^m b^m$
- a⁰ = 1

1 $b^{5} \times b^{2}$ 2 $a^{8} \div a^{2}$ 3 $(x^{4})^{3}$ 4 $(ab)^{5}$ 5 $(2x)^{3}$ 6 y^{0} 7 $5a^{2} \times 4a$ 8 $\frac{a^{8} \times a^{4}}{a^{3}}$ 9 $12a^{4}b^{5} \div 4a^{2}b^{2}$ 1 $b^{5} \times b^{2} = b^{5+2}$ $= b^{7}$ 2 $a^{8} \div a^{2} = a^{8-2}$ $= a^{6}$ 3 $(x^{4})^{3} = x^{4 \times 3}$ $= x^{12}$ 4 $(ab)^{5} = a^{5}b^{5}$ 5 $(2x)^{3} = 2^{3} \times x^{3}$ $= 8x^{3}$ 6 $y^{0} = 1$ 7 $5a^{2} \times 4a = (5 \times 4)a^{2+1}$ $= 20a^{3}$ Multiply numbers first; $a = a^{1}$.	mpin	y:		
5 $(2x)^3$ 6 y^0 7 $5a^2 \times 4a$ 8 $\frac{a^8 \times a^4}{a^3}$ 9 $12a^4b^5 \div 4a^2b^2$ 1 $b^5 \times b^2 = b^{5+2} = b^7$ 2 $a^8 \div a^2 = a^{8-2} = a^6$ 3 $(x^4)^3 = x^{4\times3} = x^{12}$ 4 $(ab)^5 = a^5b^5$ 5 $(2x)^3 = 2^3 \times x^3 = 8 \times x^3 = 8x^3$ 6 $y^0 = 1$ 7 $5a^2 \times 4a = (5 \times 4)a^{2+1}$ Multiply	1	$b^5 \times b^2$	2	$a^8 \div a^2$
7 $5a^{2} \times 4a$ 8 $\frac{a^{8} \times a^{4}}{a^{3}}$ 9 $12a^{4}b^{5} \div 4a^{2}b^{2}$ 1 $b^{5} \times b^{2} = b^{5+2} = b^{7}$ 2 $a^{8} \div a^{2} = a^{8-2} = a^{6}$ 3 $(x^{4})^{3} = x^{4} \times 3 = x^{12}$ 4 $(ab)^{5} = a^{5}b^{5}$ 5 $(2x)^{3} = 2^{3} \times x^{3} = 8 \times x^{3} = 8x^{3}$ 6 $y^{0} = 1$ 7 $5a^{2} \times 4a = (5 \times 4)a^{2+1}$ Multiply	3	$(x^4)^3$	4	(ab) ⁵
9 $12a^4b^5 \div 4a^2b^2$ 1 $b^5 \times b^2 = b^{5+2} = b^7$ 2 $a^8 \div a^2 = a^{8-2} = a^6$ 3 $(x^4)^3 = x^{4 \times 3} = x^{12}$ 4 $(ab)^5 = a^5b^5$ 5 $(2x)^3 = 2^3 \times x^3 = 8 \times x^3 = 8x^3$ 6 $y^0 = 1$ 7 $5a^2 \times 4a = (5 \times 4)a^{2+1}$ Multiply	5	$(2x)^{3}$	6	y ⁰
1 $b^{5} \times b^{2} = b^{5+2}$ $= b^{7}$ 2 $a^{8} \div a^{2} = a^{8-2}$ $= a^{6}$ 3 $(x^{4})^{3} = x^{4 \times 3}$ $= x^{12}$ 4 $(ab)^{5} = a^{5}b^{5}$ 5 $(2x)^{3} = 2^{3} \times x^{3}$ $= 8 \times x^{3}$ $= 8x^{3}$ 6 $y^{0} = 1$ 7 $5a^{2} \times 4a = (5 \times 4)a^{2+1}$ Multiply	7	$5a^2 \times 4a$	8	$\frac{a^8 \times a^4}{a^3}$
$= b^{7}$ 2 $a^{8} \div a^{2} = a^{8-2}$ $= a^{6}$ 3 $(x^{4})^{3} = x^{4 \times 3}$ $= x^{12}$ 4 $(ab)^{5} = a^{5}b^{5}$ 5 $(2x)^{3} = 2^{3} \times x^{3}$ $= 8 \times x^{3}$ $= 8x^{3}$ 6 $y^{0} = 1$ 7 $5a^{2} \times 4a = (5 \times 4)a^{2+1}$ Multiply	9	$12a^4b^5 \div 4a^2b^2$		
$= a^{6}$ 3 $(x^{4})^{3} = x^{4 \times 3}$ $= x^{12}$ 4 $(ab)^{5} = a^{5}b^{5}$ 5 $(2x)^{3} = 2^{3} \times x^{3}$ $= 8 \times x^{3}$ $= 8x^{3}$ 6 $y^{0} = 1$ 7 $5a^{2} \times 4a = (5 \times 4)a^{2+1}$ [Multiply	1			
$= x^{12}$ 4 $(ab)^5 = a^5b^5$ 5 $(2x)^3 = 2^3 \times x^3$ $= 8 \times x^3$ $= 8x^3$ 6 $y^0 = 1$ 7 $5a^2 \times 4a = (5 \times 4)a^{2+1}$ [Multiply]	2			
5 $(2x)^3 = 2^3 \times x^3$ = $8 \times x^3$ = $8x^3$ 6 $y^0 = 1$ 7 $5a^2 \times 4a = (5 \times 4)a^{2+1}$ [Multiply	3	$(x^4)^3 = x^{4 \times 3}$ = x^{12}		
$= 8 \times x^{3}$ = 8x ³ 6 y ⁰ = 1 7 5a ² × 4a = (5 × 4)a ²⁺¹ [Multiply	4	$(ab)^5 = a^5b^5$		
7 $5a^2 \times 4a = (5 \times 4)a^{2+1}$ [Multiply	5	$= 8 \times x^3$		
7 $5a^2 \times 4a = (5 \times 4)a^{2+1}$ = $20a^3$ Multiply numbers first; $a = a^1$.	6	$y^0 = 1$		
	7	$5a^2 \times 4a = (5 \times 4)a$ $= 20a^3$	y ^{2 + 1}	Multiply numbers first; $a = a^1$.

8
$$\frac{a^8 \times a^4}{a^3} = \frac{a^{12}}{a^3} \left[\frac{a^{12}}{a^3} \operatorname{means} a^{12} \div a^3 = a^9 \right]$$

= a^{12-3}
= a^9
9 $12a^4b^5 \div 4a^2b^2 = 3a^{4-2}b^{5-2}$
= $3a^2b^3$ Divide
numbers
first.

Division of Pronumerals

When dividing pronumerals, we can cancel components such as numbers and like terms.

	ap	F	for Exan	nple	2	
	Simplify	y:				
	1				2a ÷ 4a	
	3	$15xy^2t \div$	5 <i>xy</i> 4	15	$5m^2n \div 10mn^2$	
	5	$25x^7y^4$ ÷	$5x^3y^2$			
	1	18 <i>b</i> ÷ 3 =	$=\frac{18b}{3}$	Wr for	ite in fractional m. Note $a \div b = \frac{a}{b}$	
		=	$=\frac{\mathcal{18}_{6}\times b}{\mathcal{3}_{1}}$	Wr	ite it in expanded m.	
		=	= <u>6b</u> 1	Car fac	ncel common tors.	
		=	= 6b	$\left[\frac{6b}{1}\right]$	is written as 6b.	
	2	12a ÷ 4a	$=\frac{12a}{4a}$		Write in fractional form.	
			$=\frac{\cancel{12}_{3}\times}{\cancel{1}_{1}\times\cancel{1}_{3}}$	<u>ø₁</u> ø ₁	Write in expanded form.	
٦			$=\frac{3}{1}$		Cancel common factor.	_
;			= 3			

Chapter 7—Algebra 125

3
$$15xy^{2}t \div 5xy = \frac{15xy^{2}t}{5xy}$$
$$= \frac{15xy^{2}t}{5xy} + \frac{15x^{2}t}{5xy}$$
$$= \frac{15x^{2}x \times 1 \times 1}{5x^{2} \times 1 \times 1}$$
$$= \frac{3yt}{1}$$
$$= 3yt$$
4
$$15m^{2}n \div 10mn^{2} = \frac{15m^{2}n}{10mn^{2}}$$
$$= \frac{15x^{2}n \times 1}{10x^{2} \times 1} \times 1$$
$$= \frac{3m}{2n}$$
5
$$25x^{7}y^{4} \div 5x^{3}y^{2} = \frac{25}{5}x^{7-3}y^{4-2}$$
[Use the rules of indices.]
$$= 5x^{4}y^{2}$$

Excel Mathematics Study Guide Year 7