KEYWORDS

Algebra	Patterns
Expand	Power
Evaluate	Pronumerals
Expression	Relationship
Formula	Simplify
Indices	Substitution

Number Patterns and Pronumerals

The study of number patterns is very important in the understanding of pronumerals.

1 By considering the pattern below, made of matchsticks, complete the table.

2 In your own words, write a rule that relates the number of matchsticks needed to build the pattern to the number of squares.
3 If N stands for the number of matchsticks used to create S squares in the pattern, write the rule in Question 2 using pronumerals.

4 Using the rule, find the number of matchsticks needed to create 30 squares.

5 Using the rule, find the number of squares created if 240 matchsticks are used.

1

Number of squares	1	2	3	4	5	6	7	8
Number of matchsticks	4	8	12	16	20	24	28	32

2 Number of matchsticks
$=4 \times$ number of squares in the pattern
3
where $N=$ number of matchsticks
and $\quad S=$ number of squares.
4 Using the rule found in Question 3, substitute $S=30$ and find N.

$$
\begin{aligned}
N & =4 \times S \\
& =4 \times 30 \\
& =120
\end{aligned}
$$

Therefore, 120 matchsticks are needed to build a pattern with 30 squares.

5 Using the rule found in Question 3, substitute $N=240$ and find S.

$$
\begin{aligned}
N & =4 \times S \\
240 & =4 \times S \\
S & =60
\end{aligned}
$$

Therefore, 60 squares can be built with 240 matchsticks.

Note:

- $\quad N$ and S are called pronumerals.
- Pronumerals stand for numerals. In the above example, the pronumeral N stands for the number of matchsticks and S stands for the number of squares.
- In algebra, a rule is called a formula. For the above example, the formula is $N=4 \times S$, where N stands for the number of matchsticks used in the pattern and S stands for the number of squares.

For Example

Find a formula relating x and y in the following pattern:

x	1	2	3	4	5
y	3	5	7	9	11

It is observed that 'to obtain the number in the second row you need to multiply the number in the first row by 2 and then add 1^{\prime}, as follows:

1	2	3	4	5
3	5	7	9	11
$3=$	$5=$	$7=$	$9=$	$11=$
$1 \times 2+1$	$2 \times 2+1$	$3 \times 2+1$	$4 \times 2+1$	$5 \times 2+1$

Therefore, the rule is $y=2 \times x+1$.

For Example

1 Complete the table using the formula $N=3 \times t-1$:

t	1	2	3	4	5
N					

1 When $t=1, \quad N=3 \times 1-1=2$
$t=2, \quad N=3 \times 2-1=5$
$t=3, \quad N=3 \times 3-1=8$
$t=4, \quad N=3 \times 4-1=11$
$t=5, \quad N=3 \times 5-1=14$
Therefore, the completed table is as follows:

t	1	2	3	4	5
N	2	5	8	11	14

Definition

A pronumeral represents a number and may take any numerical value. For example, $x=2$ and $y=5$.

Operations on Pronumerals

The four operations of arithmetic (,,$+- \times$ and \div) have the same meaning in algebra as they have in arithmetic:

- $a+b$ means the sum of the numbers represented by the pronumerals a and b. The actual value of $a+b$ can be found only if the values of a and b are known. If $a=7$ and $b=3$ then $a+b=7+3=10$.
- $a-b$ means the difference of the numbers represented by the pronumerals a and b. The value of $a-b$ can be found only if the values of a and b are known.
If $a=10$ and $b=6$ then $a-b=10-6=4$.
- $a b \quad$ means the product (i.e. $a b=a \times b$) of the numbers represented by the pronumerals a and b. The value of $a b$ can be found only if the values of a and b are known. If $a=2$ and $b=6$ then $a b=2 \times 6=12$.
- $\frac{a}{b} \quad$ means the quotient (i.e. $\frac{a}{b}=a \div b$) of the numbers represented by the pronumerals a and b. The value of $\frac{a}{b}$ can be found only if the values of a and b are known. If $a=12$
and $b=4$ then $\frac{a}{b}=a \div b=\frac{12}{4}$

$$
=12 \div 4=3 .
$$

Note: $a b$ is the shorthand way of writing $a \times b$ (that is, $a \times b=a b$). $\frac{a}{b}$ means $a \div b$ (that is, $\frac{a}{b}$ $=a \div b)$. $a b$ is called the simplified form. $a \times b$ is called the expanded form.

Multiplication of Pronumerals

When multiplying pronumerals, the multiplication sign, \times, is often omitted.

For example, $a \times b$ is written as $a b$ $4 \times a=4 a$ $a \times b \times c=a b c$

For Example

Simplify the following algebraic expressions:
$\left.\begin{array}{llll}1 & 3 \times b & \mathbf{2} & a \times 5 \\ \mathbf{3} & 2 \times a \times b & \mathbf{4} & 5 a \times 2 b \\ 5 & a \times a & 6 & b \times 3 a \times 4 \\ 7 & 3 \times a \times 2 a & & \\ \mathbf{1} & 3 \times b=3 b & & \begin{array}{l}\text { Omit the multiplication sign. } \\ \text { Note the number is always } \\ \text { written first. }\end{array}\end{array}\right]$
$2 a \times 5=5 a \quad$ [Always write the number first.]
$32 \times a \times b=2 a b \quad[$ This expression could be written as $2 b a$ because $a b=b a$.
$45 a \times 2 b=10 a b$
$5 \times 2=10, a \times b=a b$.
Multiply the numbers
first and then write the
letters.
$5 a \times a=a^{2}$ $\left[\begin{array}{l}a \times a \text { is not written } \\ \text { as } a a \text { but as } a^{2} .\end{array}\right]$ $6 b \times 3 a \times 4=12 b a$
$\left[\begin{array}{l}b \times a=b a, 3 \times 4=12 \\ \text { Remember this expression could } \\ \text { be written as } 12 a b \text { since } b a=a b .\end{array}\right]$
$73 \times a \times 2 a=6 a^{2}$
$\left[\begin{array}{l}\text { Remember: multiply numbers first; } \\ a \times a=a^{2} \text { and not } a a .\end{array}\right]$

For Example

Write the following expressions in expanded form:
$14 b$
$23 a b c$
$33 b^{2}$
$4 a b^{2} c$
$5(2 a)^{2}$
$14 b=4 \times b$
$23 a b c=3 \times a \times b \times c$
$33 b^{2}=3 \times b \times b$
$4 a b^{2} c=a \times b \times b \times c$
$5(2 a)^{2}=2 a \times 2 a=2 \times a \times 2 \times a$

Substitution in Algebraic Expressions

In substitution we replace the pronumeral with its numerical value (which must be given) and find the value of an arithmetic expression.

If $a=2, b=4$ and $c=5$ evaluate:
$1 a b$
$2 a+b$
$3 \frac{b}{2}$
$4 c-a$
$5 \quad 2 b-c$
$6 a b c$
$73 a^{2}$
$8 \frac{2 b+4}{a}$
$9 c(b-a)$

$$
1 \quad \begin{aligned}
a b & =a \times b \\
& =2 \times 4 \\
& =8
\end{aligned}
$$

[$a b=a \times b$.]
Remember that $a=2$ and $b=4$.
$3 \quad \frac{b}{2}=\frac{4}{2}$
$\left[\right.$ Note $\left.\frac{b}{2}=b \div 2\right]$

$$
\begin{aligned}
& =4 \div 2 \\
& =2
\end{aligned}
$$

$4 \quad c-a=5-2$

$$
=3
$$

$5 \quad 2 b-c=2 \times b-c$
Note order of
$=2 \times 4-5$
$=8-5$
$=3$
$6 \quad a b c=a \times b \times c$

$$
\begin{aligned}
& =2 \times 4 \times 5 \\
& =40
\end{aligned}
$$

$7 \quad 3 a^{2}=3 \times a \times a$

$$
=3 \times 2 \times 2
$$

$$
=12
$$

$8 \quad \frac{2 b+4}{a}=\frac{2 \times b+4}{a}$

$$
\begin{aligned}
& =\frac{2 \times 4+4}{2} \\
& =\frac{8+4}{2} \\
& =\frac{12}{2} \\
& =6
\end{aligned} \quad\left[\frac{12}{2} \text { means } 12 \div 2\right]
$$

$9 \quad c(b-a)=5 \times(4-2)$

$$
=5 \times 2
$$

$$
=10
$$

Substitution into Simple Formulae

- formula combines at least two pronumerals.
value of one of the pronumerals can be and by substituting numbers for the other zonumerals.

For Example

$E T=4 n-1$, find the value of T when $n=5$.
$=4 n-1$
$=4 \times n-1$
$=4 \times 5-1$
$=20-1$

For Example

1 If $P=2(n+b)$, and $n=28, b=12$, find P.
$1 \quad P=2(n+b)$
$=2(28+12)$
$=2(40)$
$=2 \times 40 \quad[2(40)=2 \times 40]$
$=80$

1 If $K=4 a^{2}$, find the value of K when $a=3$.
$1 K=4 a^{2}$
$=4 \times a \times a$
$=4 \times 3 \times 3$
$=36$

1 If $x=u t+\frac{1}{2} a t^{2}$, and $u=12, t=3$ and $a=8$, find x.
$1 x=u t+\frac{1}{2} a t^{2}$
$=12 \times 3+\frac{1}{2} \times 8 \times 3^{2}$
$=12 \times 3+\frac{1}{2} \times 8 \times 9$
$=36+36$
$=72$

Like Terms

Like terms have the same pronumeral or pronumeral parts. For example, $x,-5 x, 4 x$ and $20 x$ are like terms.

Like Terms of an Expression

An expression such as $2 x+3 y+3 t$ has 3 terms. Similarly, $5 x+3 x^{2}$ has 2 terms. Like terms of an expression are those that have the same pronumeral parts. For example, the expression $5 x+3 y+2 x+4 x$ has 4 terms. $5 x, 2 x$ and $4 x$ are like terms of the expression. The following are examples of groups of like terms: $\{3 y, y$, $-2 y\},\{a b, b a, 3 a b\},\left\{2 x^{2},-7 x^{2}, 3 x^{2}\right\}$. Similarly, $5 x, 3 y,-2 t$ are unlike terms since their pronumeral parts are all different.

Collecting Like Terms

When adding or subtracting pronumerals, only like terms can be added or subtracted.

For Example

Simplify the following:
$13 a+2 a+a$
$26 a+2 b+2 a+7 b$
$37 t-t$
$44 a b-2 b a$
$55 x^{2}+3 x-2 x^{2}+x$
$64 t+k-3 t+3 k$
$13 a+2 a+a=6 a$
$\left[\begin{array}{l}a=1 a \\ (3+2+1) a\end{array}\right]$
$26 a+2 b+2 a+7 b=8 a+9 b$
This expression could be rearranged so that like terms are grouped together.

$$
6 a+2 b+2 a+7 b=(6 a+2 a)+(2 b+7 b)
$$

$$
=8 a+9 b
$$

$37 t-t=7 t-1 t$
$[t=1 t]$
$=6 t$
$44 a b-2 b a=2 a b$
$a b=b a$, therefore $4 a b$ and $2 b a$ are like terms.
$5 \quad 5 x^{2}+3 x-2 x^{2}+x=\left(5 x^{2}-2 x^{2}\right)+(3 x+x)$

$$
=3 x^{2}+4 x
$$

Grouping like terms together, x^{2} and x are unlike terms.

6

$$
4 t+k-3 t+3 k=(4 t-3 t)+(k+3 k)
$$

[Grouping like terms

$$
=t+4 \mathrm{k}
$$

Indices (Extension)

Index Notation

$a \times a$ is written as a^{2} (a is squared)
$a \times a \times a$ is written as a^{3} (a is cubed) $a \times a \times a \times a$ is written as a^{4}
(it is a to the power of
Note $a^{m}=\underbrace{a \times a \times a \times \ldots \times a}_{m \text { times }}$ (it is called the m th power of a)
In the expression a^{m} the m is called the index or power. The plural of index is indices.

For Example

1 Evaluate:
a 2^{3}
b 12^{2}
c 3^{4}

2 Write the following expressions in index form:
a $5 \times 5 \times 5 \times 5$
b $b \times b \times b \times a \times a$
c $3 \times a \times a \times a \times b \times b \times b \times b \times b$
1 a $2^{3}=2 \times 2 \times 2=8$
b $12^{2}=12 \times 12=144$
c $3^{4}=3 \times 3 \times 3 \times 3=81$

2 a $5 \times 5 \times 5 \times 5=5^{4}$
b $b \times b \times b \times a \times a=b^{3} a^{2}$ or $a^{2} b^{3}$
c $3 \times a \times a \times a \times b \times b \times b \times b \times b=3 a^{3} b^{5}$

of Indices

When multiplying, add indices. When taiding, subtract indices:

```
\(a^{m} \times a^{n}=a^{m+n}\)
\(a^{m} \div a^{n}=a^{m-n}\)
\(\left(a^{m}\right)^{n}=a^{m n}\)
- \((a b)^{m}=a^{m} b^{m}\)
(a) \(a^{0}=1\)
```


For Example

Simplify:

$7 \begin{aligned} 5 a^{2} \times 4 a & =(5 \times 4) a^{2+1} \\ & =20 a^{3}\end{aligned} \quad\left[\begin{array}{l}\text { Multiply } \\ \text { numbers first; } \\ a=a^{1} .\end{array}\right]$
$1 b^{5} \times b^{2}$
$3\left(x^{4}\right)^{3}$
$5(2 x)^{3}$
$7 \quad 5 a^{2} \times 4 a$
$9 \quad 12 a^{4} b^{5} \div 4 a^{2} b^{2}$
$1 b^{5} \times b^{2}=b^{5+2}$

$$
=\tilde{b}^{7}
$$

$2 a^{8} \div a^{2}=a^{8-2}$

$$
=a^{6}
$$

$3\left(x^{4}\right)^{3}=x^{4 \times 3}$

$$
=x^{12}
$$

$4(a b)^{5}=a^{5} b^{5}$
$5(2 x)^{3}=2^{3} \times x^{3}$

$$
=8 \times x^{3}
$$

$6 \quad y^{0}=1$

$$
=20 a^{3}
$$

$1 \times b^{5}=b^{5}$

$$
a^{8-2}
$$

$$
=8 x^{3}
$$

$2 a^{8} \div a^{2}$
$4(a b)^{5}$
$6 y^{0}$
$8 \frac{a^{8} \times a^{4}}{a^{3}}$

$8 \quad \frac{a^{8} \times a^{4}}{a^{3}}=\frac{a^{12}}{a^{3}}\left[\frac{a^{12}}{a^{3}}\right.$ means $\left.a^{12} \div a^{3}=a^{9}\right]$

$$
=a^{12-3}
$$

$$
=a^{9}
$$

$$
9 \begin{aligned}
12 a^{4} b^{5} \div 4 a^{2} b^{2} & =3 a^{4-2} b^{5-2} \\
& =3 a^{2} b^{3}
\end{aligned}\left[\begin{array}{l}
\text { Divide } \\
\text { numbers } \\
\text { first. }
\end{array}\right]
$$

Division of Pronumerals

When dividing pronumerals, we can cancel components such as numbers and like terms.

For Example

Simplify:
$\begin{array}{llll}1 & 18 b \div 3 & 2 & 12 a \div 4 a \\ 3 & 15 x y^{2} t \div 5 x y & 4 & 15 m^{2} n \div 10 m n^{2} \\ 5 & 25 x^{7} y^{4} \div 5 x^{3} y^{2} & \end{array}$
$1 \quad 18 b \div 3=\frac{18 b}{3} \quad\left[\begin{array}{l}\text { Write in fractional } \\ \text { form. Note } a \div b=\frac{a}{b}\end{array}\right]$
$=\frac{188_{6} \times b}{z_{1}^{\prime}}\left[\begin{array}{l}\text { Write it in expanded } \\ \text { form. }\end{array}\right]$
$=\frac{6 b}{1} \quad\left[\begin{array}{l}\text { Cancel common } \\ \text { factors. }\end{array}\right]$
$=6 b \quad\left[\frac{6 b}{1}\right.$ is written as $\left.6 b.\right]$
$212 a \div 4 a=\frac{12 a}{4 a}$
$\left[\begin{array}{l}\text { Write in } \\ \text { fractional form. }\end{array}\right]$
$=\frac{\not \mathscr{Z}_{3} \times \not \mathscr{A}_{1}}{A_{1} \times \not \mathscr{A}_{1}} \quad\left[\begin{array}{l}\text { Write in } \\ \text { expanded form. }\end{array}\right]$
$=\frac{3}{1} \quad\left[\begin{array}{l}\text { Cancel common } \\ \text { factor. }\end{array}\right]$
$=3$
$3 \quad 15 x y^{2} t \div 5 x y=\frac{15 x y^{2} t}{5 x y}$

$$
\begin{aligned}
& =\frac{15_{3} \times \not x_{1} \times y_{1} \times y \times t}{\$_{1} \times \not x_{1} \times y_{1}^{\prime}} \\
& =\frac{3 y t}{1} \\
& =3 y t
\end{aligned}
$$

$415 m^{2} n \div 10 m n^{2}=\frac{15 m^{2} n}{10 m n^{2}}$

$$
\begin{aligned}
& =\frac{15_{3} \times n n_{1} \times m \times \not n_{1}}{1 \sigma_{2} \times \not n_{1} \times \not n_{1} \times n} \\
& =\frac{3 m}{2 n}
\end{aligned}
$$

$5 \quad 25 x^{7} y^{4} \div 5 x^{3} y^{2}=\frac{25}{5} x^{7-3} y^{4-2}$
[Use the rules of indices.]

$$
=5 x^{4} y^{2}
$$

