(1) To complete a pattern of numbers we first determine the rule and then use it to find other numbers.
Examples:
a Complete the sequence $32,51,70,89$, \qquad
The sequence is counting forward by 19.
Next number $=89+19$

$$
\begin{aligned}
& =89+20-1 \\
& =109-1 \\
& =108
\end{aligned}
$$

The next number is 108 .
b What is the missing number in this
sequence: 256,128,64, \qquad 16, 8
The pattern is dividing by 2 .
Missing number $=64 \div 2$

$$
=32
$$

The missing number is 32 .
A pattern of shapes can be summarised into a table.
Example: Matches are used to form a pattern of squares.

a How many matches are needed to make 4 squares?
The matches used are 4, 7, 10, ?
The next number is 13
b Complete the table:

Squares	1	2	3	4	5	6	7
Matches	4	7	10	13			

The three entries are 16, 19, 22
c Write in words the rule for the bottom row. The bottom number is 3 times the top number plus 1.
d How many matches are needed for 20 squares?
Using the rule in c, $3 \times 20+1=61$
3) A table can be completed by determining the rule, or pattern.
Example:

Top	1	2	3	4	5	6
Bottom	6	10	14	18	22	$?$

a What is the rule?
The bottom number is four times the top number plus 2.
b What is the missing number?

$$
\begin{aligned}
4 \times 6+2 & =24+2 \\
& =26
\end{aligned}
$$

Number sentences can be completed by finding the missing value.
Examples: Find the missing value.
a $5+$ \qquad $=3 \times 4$
As $3 \times 4=12$, then the missing number is 7 as $5+7=12$
b $6 \times$ \qquad $=3$
Replace the missing number with the phrase, 'what number': 6 times 'what number' is 3 . This means the number is $\frac{1}{2}$
An unknown number can be found.
Example: I am thinking of a number so that when I double it and add 5, I get 17 .
What is the number?
2 times 'what number' $+5=17$
This means, 2 times 'what number' $=12$
The number is 6 .
A solution can be checked by substituting different numbers in the original question. Example: Half of a certain number plus six is equal to ten. Find the number.
A 2 B 4 C 6 D 8
Check each of the choices:
2. Half of $2+6=1+6=10$

3: Half of $4+6=2+6 \neq 10$
6: Half of $6+6=3+6 \neq 10$
8: Half of $8+6=4+6=10$
The number is 8 .
Inverse operations are useful when solving number sentences. Inverse operations are addition and subtraction, multiplication and division.
Examples: Find the missing value in
a $95+$ \square $=198$
The inverse of addition is subtraction:
\square $=198-95=103$
b \square $\div 0.4=0.6$
The inverse of division is multiplication

$$
\square=0.6 \times 0.4=0.24
$$

Fastest trip is the 0817 from Jeffersen arriving in Bradley at 0836.
This is a trip time of $36-17=19 \mathrm{~min}$

NUMBER AND ALGEBRA (Test Your Skills)

 Patterns and algebraPage 73
(1) The pattern is counting forward by 13:
$91+13=104$
The missing value is 104.
(2) The pattern is counting forward by $\frac{2}{5}$:

$$
\begin{aligned}
\frac{4}{5}+\frac{2}{5} & =\frac{6}{5} \\
& =1 \frac{1}{5}
\end{aligned}
$$

The missing value is $1 \frac{1}{5}$.
(3) The pattern is counting forward by 0.7 : $1.6+0.7=2.3$
The missing value is 2.3 .
(4) Continue the pattern: $16,12,8,4,0,-4, \ldots$ The sixth number is -4 .
(5) The rule: 'bottom number = double the top number and then add 7^{\prime}

$$
\begin{aligned}
& =2 \times 3+7 \\
& =6+7 \\
& =13
\end{aligned}
$$

The value of X is 13 .

Pattern of matches: 3, 5, 7, 9, The next number is 11 This means 11 matches for 5 triangles.
Continuing the pattern:, $\ldots 9,11,13,15,17$ The value of X is 17 .
[Also, the rule is Matches $=2 \times$ triangles +1]
Top row is counting forward by 5 , and the bottom row is counting backward by 5 . This means $\mathrm{X}=27$ and $\mathrm{Y}=33$.
The pattern is $1,3,6,10, \ldots$ The differences are 2, 3, 4, etc. The next number is $10+5=15$.
(10)

The pattern of dots is $1,3,6,10,15,21, \ldots$ The number X is 21 .

11 As 295 - \qquad $=86$, then $295-86=$ \qquad
The missing number is 209.

$$
\begin{array}{r}
2^{8} 915 \\
-\quad 86 \\
\hline 209
\end{array}
$$

As $4 \times \ldots-2=18$ then $4 \times \ldots=20$ then the missing number is 5 .
Work backwards from Jack's answer by using the inverse operations:
$24-6$ is 18 , then halve which is 9 .
Jack started with 9 ; check by substituting.
10 - third of a number $=6$
This means that a third of the number is 4
The number must be 12 .
Check by substitution:
10 - third of 12 is 6 ... correct.
(15)
$48 \div$ \qquad $+5=13$ means $48 \div$ \qquad $=8$ This means the missing number is 6 , as $48 \div 6=8$.
$93,98,103,108,113, \ldots$
This means the missing number is 113 .
The number of dots is $1,5,9, \ldots$
The pattern is counting forward by 4
The next number is 13 .
18 The pattern is $1,5,9,13,17,21, \ldots$ As 21 is the 6th term, there are 21 dots in Fig 6.

NUMBER AND ALGEBRA (Real Test) Patterns and algebra

1 C 2 B 3 D 41025 A $6 D 7 D 8 C 9 B 10 A$ 11 C 12 B 13 B 14 A 15 B 16 D EXPLANATIONS
(1) Matches $=2 \times$ triangles +1

This means $2 \times 6+1=13$.
[We could have extended the pattern:
3, 5, 7, 9, 11, 13]
From question 1, Matches $=2 \times$ triangles +1 then $2 \times 10+1=21$
You need 21 matches to make 10 triangles.
Again, from question 1, Matches $=2 \times$ triangles +1
then $2 \times 50+1=101$

ANSWERS Week 3

$7 \times \Delta=714$, means $\Delta=714 \div 7$

$$
=102
$$

The missing number is 102.
Work backwards from Suzie's answer:
32 subtract 8 is 24 , then divide by 4 is 6 Suzie's number was 6.
[We can check this answer by substituting 6 back into the question]
We could also have tried each of the choices to find the number.
(6) Pattern is counting forwards by 8 This means $25,33,41,49,57,65, \ldots$ The missing number is 65 .
7 Using inverse operations, Amaya's number will be found by the rule: 'Add 5 to 17 and then divide by $2 .{ }^{\prime}$
Pattern is counting forwards by 6 This means $21,27,33,39,45,51,57$ The number is 51 .

Sean uses the rule 'multiply top number by 3 and add 2^{\prime}. Check some of the numbers:
$6 \times 3+2=20 ; 11 \times 3+2=35$, etc.
(10) If $\Delta=6$, then $6+6+\bigcirc=15$, or $12+\bigcirc=15$ means $\bigcirc=3$
(11) Use inverse operations: 3 times 8 is 24 , then divide by 6 is 4 .
Gavin started with the number 4.
(12)

The sequence is the square numbers:
$1,4,9,16,25,36,49$
This means the missing numbers are 9 and 16.
(13)

As $45=2 \times$ \qquad +5 means $40=2 \times$ \qquad The missing number is 20 .

From 64, subtract 8 gives 56 and then divide by 8 which is 7 .
Shari started with the number 7 .
The pattern is $0.3,0.8,1.3,1.8, \ldots$
16
Using the rule :'bottom number $=30$ minus 2 times top number' means

$$
\begin{aligned}
X & =30-2 \times 5 \\
& =30-10 \quad \text { This means } X=20 . \\
& =20 \quad .
\end{aligned}
$$

MEASUREMENT AND GEOMETRY

 (Test Your Skills)2D and 3D shapes and position
Page 76
(1) The angle is obviously more than a right angle $\left(90^{\circ}\right)$ and less than a straight angle $\left(180^{\circ}\right)$. The angle is about 120°.
(2) $x=180-50$ (straight angle $=180^{\circ}$) $=130$
3 $x=180-(100+30) \quad$ (angles in $\left.\Delta=180^{\circ}\right)$ $=180-130$ $=50$
(4) With angles of $100^{\circ}, 30^{\circ}$ and 50°, the triangle is scalene.
(5) All angles equal and therefore equal to 60°.
(6) A rhombus has all sides equal and the diagonals are of different lengths.
7 A quadrant is not shown on the diagram.
8 An isosceles triangle has 1 axis of symmetry.
(9) An equilateral triangle has an order of rotational symmetry of 3 .
(10) The sides have been doubled in size.

This means $x=2.3 \times 2$

$$
=4.6
$$

(11) As $3 \times 15=45$, diameter is 45 cm .
(12) With. 5 faces, 9 edges and 6 verthes, the shape is a triangular prism.
(13)

The cross-section would be a rectangle.
(14) $\square \square$
(15) The net consists of 2 triangles and 3 rectangles.
$16 R$ is south-east of J.

MEASUREMENT AND GEOMETRY (Real Test)
 2D and 3D shapes and position
 Page 78

1 C 2 B 3 D 4 D 5 D 6 B 7 C 8 A 9 B 10 B 11 A 12 B 13 A 14 A 15 C 16 D

NUMBER AND ALGEBRA Patterns and algebra

20 mins

$65,78,91$,
What is the missing value?
A 13
B 103
C 104
D 106
(2) $\frac{2}{5}, \frac{4}{5}$,

What is the missing value?
A $\frac{1}{5}$
B $\frac{2}{5}$
C 1
D $1 \frac{1}{5}$
0.2, 0.9, 1.6, \qquad , 3.7

What number goes here?
A 0.7
B 2.3
C 3
D 3.2

0
$16,12,8,4, \ldots$
What is the sixth number in the pattern?

(5) | A -12 | B -8 | | C -4 |
| :--- | :---: | :---: | :---: |\quad D 0

The rule used to complete the table is 'bottom number is double the top number and then add 7 '. What is the value of X ?
A 11
B 12°
C 13
D 14

Here is a pattern of triangles made from matches:

How many matches are needed to make 5 triangles?
A 10
B 11
C 12
D 15

The diagrams are used to complete a table.

Triangles	1	2	3	4	5	6	7	8	9
Matches	3	5	7	9				\times	

What is the value of X ?
A 13
B 16
C 17
D 24

8

Top	12	17	22	X	32
Bottom	48	43	38	Y	28

Which is correct?
$A X=27$ and $Y=43$
B $X=23$ and $Y=35$
C $X=27$ and $Y=35$
D $X=27$ and $Y=33$

The pattern of dots continues.
9 How many dots would be in the 5th figure?
A 11
B 12
C 13
D 15

10 A table summarises the figures and dots.

Figure	1	2	3	4	5	6
Dots	1	3	6	10		X

What is the value of X ?
A 15
B 16
C 18
D 21
(11) 295 - \qquad $=86$
What is the missing number?
A 209
B 211
C 219
D 229
(12) $4 \times$ \square $-2=18$
What is the missing number?
A 5
B 4
C 2
D 10

13 Jack is thinking of a number. He doubles it and adds six. His answer is twenty-four. What was Jack's original number?
A 6
B 9
C 12
D 16
(14) A third of what number subtracted from ten is the same as six?
A 6
B 9
C 12
D 15
(15) $48 \div$ \square $+5=13$
What is the missing number?
A 6
B 8
C 18
D 30

16 Lee started at 93 and counted forward by 5. His second number was 98 . What is his fifth number?
A 5
B 103
C 108
D 113

Here is a pattern of dots:
17 How many dots will be in Fig 4?

Fig 1 Fig 2
Fig 3
A 13
B 14
C 15 .
D 16

18 Which figure will consist of 21 dots?
A Fig 5
B Fig 6
C Fig 7
D Fig 8

Arjun is making this pattern of triangles using natches:

He summarised the information in the table:

Triangle	1	2	3	4	5	6
Matches	3	5	7			\times

What number replaces the X ? Hint 1
A 9
B 12
C 13
D 18

How many matches are needed to make 10 triangles?
A 20
B 21
C 26
D 30

If Arjun continues the pattern, how many matches would he need for 50 triangles?
A 51
'B 81
C 86
D 101

What is the missing number in this number sentence? $7 \times \Delta=714$ Hint 2 Write your answer in the box: \square
Suzie was thinking of a number. She said that if you multiplied the number by 4 and then added 8, the answer would be 32 . What was Suzie's number? Hint 3
A 6
B 8
C 12
D 28

6 Kali wrote this number pattern.
$25,33,41,49, \ldots$
If the rule remained the same, what was Kali's sixth number in the pattern?
A 8
B 48
C 55
D 65

7 Amaya thought of a number. When she doubled her number and subtracted 5 , her answer was 17 . Which of the following statements shows the correct way to work out Amaya's number?
A Divide 17 by 2 and add 5
B Multiply 17 by 2 and add 5
C Add 5 to 17 and then multiply by 2
D Add 5 to 17 and then divide by 2
8
This pattern shows some missing numbers.
21, 27, 33, 39, \qquad
\qquad 57

What number goes here?
A 6
B 49
C 51
D 55

9 Sean used the same rule on each number in the top row to get the number below it
in the bottom row. What rule did Sean use?

Top	6	11	16	21
Bottom	20	35	50	65

A add 14 to the top number
B multiply top number by 3 and add 2
C multiply top number by 4 and minus 4
D multiply top number by 5 and minus 10
10
Look at this number sentence:
$\Delta+\Delta+\bigcirc=15$
If $\triangle=6$, what is the value of the \bigcirc ?
A 3
B 4
C 5
D 6
(11) Gavin starts with a number. He multiplies it by 6 and then divides by 8 . His answer is 3. What number did Gavin start with?
A 2
B 3
C 4
D 6
(12)
$1,4, \ldots, 25,36,49$
What are the missing numbers?
A 5 and 10
B 9 and 16
C 10 and 15
D 7 and 10
(13) If $45=2 \times \square+5$, what is the missing value? Hint 4
A 15
B 20
C 25
D 30
(14) Shari thought of a number. She multiplied it by 8 and then added 8 . Her answer was 64. What number did Shari start with?
A 7
B 8
C 9
D 16
(15) Start with 0.3 and count forward by 0.5 . Which pattern shows this rule?
A $0.3,0.5,0.7,0.9, \ldots$ B
C $0,3,0,8,1,2$,
A.3, $0.8,1.2,1.6, \ldots$ D 0.3, 0.8, 1.2, 1.7, ...

16 Teresa used the rule 'Bottomnumber $=30$ minus 2 times top number' to complete the table. What is the value of X in the table?

Top	3	5	11	13
Bottom	24	X	Y	4

A 7
B 8
C 10
D 20

Hint 1: Use the first 3 numbers to develop a rule and then apply it.
Hint 2: The inverse operation of miltiplication is division.
Hint 3: Sometimes it is easier to substitute the choices into the question to find the correct one.
Hint 4: The inverse operation of addition is subtraction.

[^0]
[^0]: Answers and explanations on pages 212-213

