KEYWORDS	
Consecutive	Rationals
Equation	Solution
Integers	Substitution

An equation is an algebraic expression (sentence) with an equals sign. That is, a sentence like x + 3 = 7.

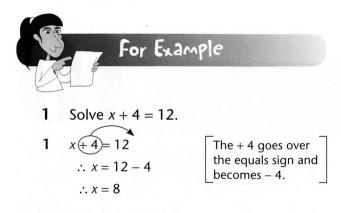
Solving an equation means finding the value of the pronumeral that makes the sentence true.

That is, if
$$x + 3 = 7$$

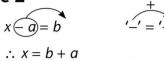
Then x = 4

This is the solution of the equation.

Solution of Equations

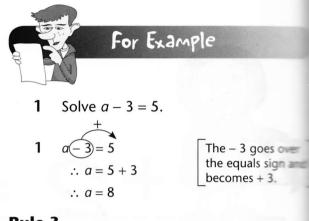

One-Step Equations

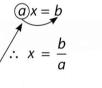
When solving equations we use the following rules.


Rule 1

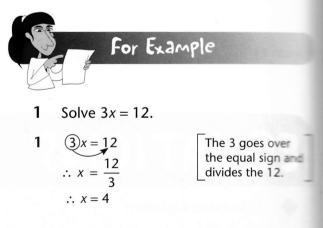
$$x + a = b$$

$$x + a = b - a$$


The + a on the left-hand side of the equals sign becomes - a when it goes over to the right-hand side of the equal sign.

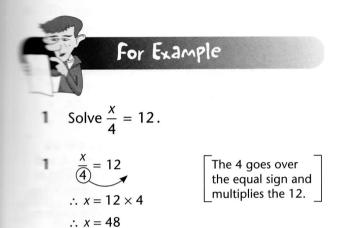

Rule 2

The -a on the left-hand side of the equals sign becomes +a when it goes over to the righthand side of the equals sign.



This means ' $a \times x'$.

The *a* on the left-hand side goes over the equals sign and divides the right-hand side. It does not change sign.


$$= b$$

$$= ba$$

$$' \div = \times'$$

This means ' $x \div a'$.

The g on the left-hand side goes over the side sign and multiplies the right-hand side.

Examples Involving Rationals and Integers

The same rules apply.

Solve the following equations:

- $1 \quad x + 7 = 3$
- **2** x 3 = -8
- 3 4x = 12
- 4 $x \frac{1}{2} = \frac{3}{4}$
- 5 $x + 2\frac{1}{2} = 4\frac{3}{4}$

1
$$x + 7 = 3$$

 $\therefore x = 3 - 7$
 $\therefore x = -4$

+ 7 goes over the equal sign and becomes - 7.

2
$$x - 3 = -8$$

 $\therefore x = -8 + 3$
 $\therefore x = -5$
3 $4x = 12$
 $\therefore x = 3$
4 $x = \frac{12}{4}$
 $\therefore x = 3$
4 $x(-\frac{1}{2}) = \frac{3}{4}$
 $x = 1\frac{1}{4}$
5 $x(+2\frac{1}{2}) = 4\frac{3}{4}$
 $x = 4\frac{3}{4} - 2\frac{1}{2}$
 $x = 2\frac{1}{4}$
 $\begin{bmatrix} -3 \text{ goes over the} \\ \text{equal sign and} \\ \text{becomes } + 3. \end{bmatrix}$
4 $goes over the \\ \text{equal sign and} \\ \text{becomes } -4. \end{bmatrix}$
 $\begin{bmatrix} -\frac{1}{2} \text{ goes over the} \\ \text{equal sign and} \\ \text{becomes } +\frac{1}{2}. \end{bmatrix}$

Summary

- When a term goes over the equal sign of an equation, its sign is changed to the opposite sign.
- Each side of an equation may be multiplied or divided by the same number.

Two-Step Equations

This type of equation involves the steps of multiplying or dividing and adding or subtracting.

Solve the following equations:

1
$$4x - 2 = 18$$

2 $3x + 2 = 23$
3 $\frac{x - 2}{3} = 12$

$$4x - 2 = 18$$

$$\therefore 4x = 18 + 2$$

$$\therefore 4x = 20$$

$$\therefore x = \frac{20}{4}$$

$$\therefore x = 5$$

1

2

3

2 3x(+2) = 23 $\therefore 3x = 23$ -

3

 $\therefore 3x = 21$

 $\therefore x = \frac{21}{3}$ $\therefore x = 7$

 $\therefore x - 2 = 12 \times 3$

 $\therefore x = 36 + 2$ ∴ *x* = 38

 $\therefore x (-2) = 36$

$$3x (+2) = 23$$

$$\therefore 3x = 23 - 2$$

$$3x = 23 - 2$$

$$3x = 21$$

$$x = \frac{21}{3}$$

$$x = 7$$

$$\frac{x - 2}{3} = 12$$

$$Taking + 2 over the equal sign gives - 2$$

$$Taking + 2 over the equal sign gives - 2$$

$$Taking + 2 over the equal sign gives - 2$$

Multiplying by 3. Taking – 2 over the

_equal sign gives + 2.

Equations with Pronumerals on Both Sides of the Equals Sign

When solving an equation with pronumerals on both sides the pronumerals are moved to the left-hand side of the equal sign, and the numbers to the right-hand side.

Solve the following equations:

- 1 7x - 3 = 5x + 11
- 4b 3 = 3b + 62
- 3 5x + 4 = x + 34
- 4y = 21 3y4

$$+3$$

$$7x - 3 = (5x) + 11$$

$$-5x$$
Taking - 3 to the RHS gives + 3 and 5 (= + 5x) to the LHS gives - 5x.
$$7x - 5x = 11 + 3$$

$$Collecting like terms:$$

$$2x = 14$$

$$\therefore 2x = 14$$

$$\therefore x = \frac{14}{2}$$

$$Dividing by 2.$$

$$x = 7$$

$$4b - 3b = 6 + 3$$

$$b = 9$$

$$4b - 3b = 6 + 3$$

$$b = 9$$

$$4b - 3b = 6 + 3$$

$$b = 9$$

$$5x + 4 = (x + 34)$$

$$Taking + 4 to the RHS gives - 4, and taking x (= + 1x) to the LHS gives - 1$$

$$5x - x = 34 - 4$$

$$Collecting like terms:$$

$$4x = 30$$

$$x = \frac{30}{4}$$

$$Dividing by 4.$$

$$x = 7\frac{1}{2}$$

$$4 \qquad 4y = 21 - 3y$$

$$\therefore 4y + 3y = 21$$

$$\therefore 7y = 21$$

$$\therefore y = \frac{21}{7}$$

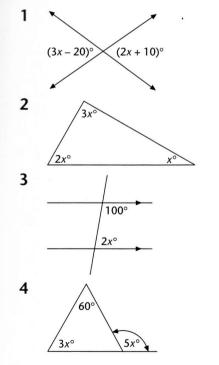
$$\therefore y = 3$$

When solving equations, keep the equal signs underneath each _other.

Equations in Geometry

Equations can be used to solve problems in geometry.

Some Important Geometrical Facts


You need to know these facts so you can form equations:

- Complementary angles add up to 90°.
- Supplementary angles add up to 180°.

- Angles on a straight line add up to 180°.
- Vertically opposite angles are equal.
- Angles at a point always add up to 360°.
- The angle sum of a triangle is 180°.
- The angle sum of a quadrilateral is 360°.
- The base angles of an isosceles triangle are equal.
- Any angle in an equilateral triangle is equal to 60°.
- The exterior angle of a triangle is equal to the sum of the two opposite interior angles.
- For a pair of parallel lines cut by a transversal:
 - Alternate angles are equal
 - Corresponding angles are equal
 - Co-interior angles are supplementary.

For the following diagrams, use a geometrical fact to form an equation. Solve the equation in each case to find *x*:

1
$$3x - 20 = 2x + 10$$

 $\therefore 3x - 2x = 10 + 20$ Vertically opposite
angles.

We do not use degrees in the equation as x is a number units are not needed in either the question or the answer.

Co-interior

angles are

supplementary

when the lines

are parallel.

2
$$3x + 2x + x = 180$$

 $\therefore 6x = 180$
 $\therefore x = \frac{180}{6}$
 $x = 30$
Angle sum of a
triangle = 180.
Collecting
terms = 6x.

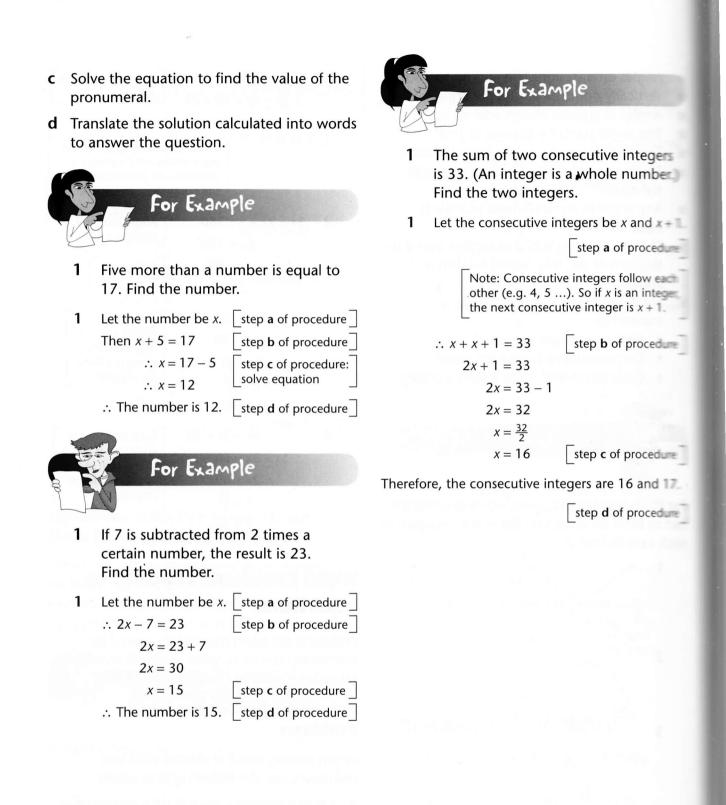
3 2x + 100 = 180∴ 2x = 180 - 100∴ 2x = 80∴ $x = \frac{80}{2}$

 $\therefore x = 40$

 $\therefore x = \frac{60}{2}$

∴ *x* = 30

- 5x = 3x + 60 $\therefore 5x - 3x = 60$ $\therefore 2x = 60$
- Exterior angle of a triangle is equal to the sum of the opposite interior angles.


Word Problems Leading to Equations

Problems are often most easily solved by translating the facts given in words into an equation involving numbers and letters.

Procedure for Solving Word Problems

When solving word problems with one unknown, use the following procedure:

- **a** Let the unknown quantity be represented by a pronumeral (say, *x*).
- **b** Form an equation to represent the facts given in the problem.

