KEYWORDS

Acute
Adjacent
Alternate
Circle
Grcumference
Co-interior
Complementary
Corresponding
Cross-section
Decagon
Dodecagon
Edges
Ellipse
Equilateral
Faces
Hendecagon
Heptagon
Hexagon
Isosceles
Kite
Nonagon
Obtuse
Octagon

Parallel Parallelogram Pentagon Perpendicular Platonic Polygon Polyhedron Prism Pyramid Quadrilateral Rectangle Reflex Revolution Rhombus Scalene Skew Square Supplementary Symmetry Trapezium Vertically opposite

Vertices

Notation and Conventions in Geometry

Symbol	Meaning	
L.	A right angle (90°)	
Δ	A triangle (e.g. Δ PQR)	
$^{\wedge}$ or \angle	Angle (e.g. ∠ABC or AB̂C)	
or //	Parallel to (e.g. AB // PQ)	
\perp	Perpendicular to (at 90° to)	
0	Degrees (e.g. 27°)	

Indicators

 To indicate that two intervals (sides) are equal, mark them in one of the following ways:

 To indicate that an angle is a right angle, mark it the following way:

 To indicate that two lines are parallel, mark them as follows:

Draw the above figure in your book and mark on it the following information:

- 1 AB // DC
- **2** AB = AE

3
$$\angle ABE = \angle CDA$$

Polygons

A polygon is a closed figure with three or more straight sides.

For Example

Advise whether or not each shape is a polygom

Naming Polygons

n stands for the number of sides of a polygon.

A polygon is named according to the number of sides it has:

Number of sides n	Name of polygon
3	Triangle
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon
8	Octagon
9	Nonagon
10	Decagon
11	Hendecagon
12	Dodecagon
n	<i>n</i> -gon

Note: A polygon has the same number of angles as sides. For example, a hexagon has six angles and also six sides.

Regular Polygons

A polygon is **regular** if all its sides are equal in length and all its angles are equal.

Wate:

- The regular triangle is an **equilateral** triangle.
- The regular quadrilateral is a square.
- The regular five-sided polygon is called a regular pentagon etc.

Regular pentagon

which of the figures A, B, C or D represent:

- 1 Hexagons?
- 2 Regular hexagons?
- A and B are hexagons, since they are polygons with six sides.
- 2 A is a regular hexagon, since all six sides and angles are equal.

Naming Points, Intervals, Lines, Polygons

A point is named by using capital letters; for example, B. An interval is named by using capital letters; for example:

4 B Interval AB = 5 cm

A line is named by using any two points on it:

 Polygons are named by taking the vertices in order; for example:

Note:

- \triangle stands for triangle.
- Three or more points on the one line are called collinear points.
- Three or more lines passing through the same point are called concurrent lines.

Lines

Two lines may be **parallel**, may **intersect** or may be **skew**.

Parallel:

← These lines are parallel. (They are always the same distance apart.) Intersect at a point:

A A D

- Line AB and line CD intersect at point X.
- Skew:

Line AB and line DH are skew. Skew lines do not intersect and are not parallel.

Name the lines in the figure that are:

- 1 Parallel to AD
- 2 Perpendicular to AD
- 3 Skew to AD.

- 1 The lines parallel to AD are BC, EH and FG.
- **2** The lines perpendicular to AD are AB, DC, AE and DH.
- **3** The lines skew to AD are BF, EF, CG and GH.

Symmetry

A figure has **line symmetry** if one side of the figure is a mirror image of the other about a line.

Some figures have more than one axis of symmetry and some have no axis of symmetry (i.e. they are not symmetrical).

A rectangle, for example, has two axes of symmetry:

A parallelogram has no axis of symmetry:

Order of Symmetry

The **order of symmetry** is the number of axes of symmetry of a figure.

An equilateral triangle has three axes of symmetry. This figure is said to have line symmetry of order three:

Draw a square and mark on it all axes of symmetry. What is the order of symmetry of a square?

The order of symmetry = 4.

Cassification of Triangles

Complete is a polygon with three sides, and complete classified according to the lengths of its complete or the sizes of its angles.

Classification According to the lengths of the Sides

Нате	Diagram	Properties
Skalene		All sides are different lengths
masceles		Two sides are equal in length
Equilateral	\triangle	All sides are equal in length

Classification According to the Size of the Angles

Name	Diagram	Properties
Acute- angled		All angles are acute
Obtuse- angled		One angle is obtuse
Right- angled		One angle is a right angle

Note: 'Acute' and 'obtuse' are defined in the section 'Angle Terminology'.

Note: A triangle can have the properties of two types of triangles. For example, it can be both isosceles and right-angled, as in this example:

Classification of Quadrilaterals

Trapezium

A pair of sides are parallel

Parallelogram

- Opposite sides are equal in length
- Opposite sides are parallel

Rhombus (diamond shape)

- All sides are equal in length
- Opposite sides are parallel

Chapter 9—Geometry 171

Parts of a Circle

The centre of a circle is usually named O.

The circumference of a circle is its perimeter.

AB is the diameter.

OC is the radius. The radius is half the length of the diameter.

Definitions

A polyhedron is a solid made of plane surfaces with straight edges (flat surfaces).

manufes of polyhedra

manufactories of non-polyhedra

Polyhedra is the plural for polyhedron.

Prisms

Sprism is a solid that has a pair of parallel **Sprism** is a solid that has a

Note: A prism is named according to the mape of its cross-section.

Some familiar prisms

Pyramids

A pyramid is named according to the shape of its base.

Some familiar pyramids

Square pyramid

Pentagonal pyramid

Triangular pyramid

Platonic Solids

Platonic solids are polyhedra whose faces are all congruent (identical) regular polygons. The most common example is a hexahedron (cube) whose faces are six identical squares.

Another example of a platonic solid is a regular tetrahedron, which is a triangular pyramid whose faces are four identical equilateral triangles. The platonic solids are named after the ancient Greek philosopher and teacher Plato:

A cube is a platonic solid. It is also called a hexahedron.

A triangular pyramid with four identical equilateral triangles as faces is called a tetrahedron.

Isometric Sketches of Solids

Solids are difficult to represent on paper, due to their three-dimensional qualities. Sketching them on isometric dot paper allows the solid to be drawn showing its true perspective.

1 Draw the following solid on isometric dot paper:

2 Draw a new solid by removing the shaded solid:

Sketching Solids from Different Views

Another method of showing the true perspective of a solid is to draw it from different views. The most common views of a solid are front, side and top views:

Consider the following solid: π

Draw the front, side and top views of the solid.

Top view

Mets of Solids

The net of a solid is a plan that, when folded, the solid:

Parts of Polyhedra

- Each surface of a polyhedron is called . a face.
- The line in which two faces meet is called an edge.
- The point where edges meet is called a . vertex (corner point).

Note: Vertices is the plural for vertex.

Angle Terminology

Naming Angles

When naming angles, we start from arm \rightarrow vertex \rightarrow arm.

For example, the angle in the diagram below is $\angle ABC$ or $\angle CBA$:

Notation

For the angle in the above diagram, we can use any of the following notations:

- ∠ABC
- AÂC
- or ∠B

Types of Angles

We name angles as follows:

Acute angle-measures between 0° and 90°.

Reflex angle-measures between 180° and 360°.

Chapter 9—Geometry 175

Complementary angles—two angles that add up to 90°.

Supplementary angles—two angles that add up to 180°.

Adjacent angles—two angles are adjacent if they have a common arm and common vertex. In the diagram, $\angle ABD$ is adjacent to $\angle DBC$. (BD is the common arm, and B is the common vertex.)

In the figure, ABCD is a rectangle.

- 1 From the diagram, name:
 - **a** An acute angle
 - **b** An obtuse angle
 - c A right angle
 - **d** A straight angle
 - e A pair of complementary angles
 - **f** A pair of supplementary angles.

- **2** From the diagram, answer these questions:
 - **a** If $\angle CDE = 40^\circ$, find the size of $\angle EDA$.
 - **b** If $\angle BED = 130^\circ$, find the size of $\angle DEC$.
- **3** a Find the complement of 70°.
 - **b** What is the supplement of 70°?
- 1 **a** \angle CDE is an acute angle (also \angle EDA, \angle CED).
 - **b** \angle BED is an obtuse angle.
 - **c** There are four right angles in the diagram, \hat{A} , \hat{B} , \hat{C} and \angle CDA.
 - **d** \angle BEC is a straight angle.
 - e \angle CDE and \angle EDA are complementary since \angle CDE + \angle EDA = 90°.
 - f \angle BED and \angle DEC are adjacent supplementary angles since \angle BED + \angle DEC = 180°.
- **2** a From 1e, \angle CDE + \angle EDA = 90° (They are complementary angles.) If \angle CDE = 40°, then 40° + \angle EDA = 90° $\therefore \angle$ EDA = 50°
 - **b** From 1f, \angle BED + \angle DEC = 180° (They are supplementary angles.) If \angle BED = 130°, then

 $130^{\circ} + \angle DEC = 180^{\circ}$

 $\therefore \angle \text{DEC} = 50^{\circ}$

3 a To find the **complement** of 70° we find an angle that, when added to 70° makes 90°. Therefore, the complement of $70^\circ = 20^\circ$.

The complement of $x^\circ = (90 - x)^\circ$

b To find the **supplement** of 70° we find an angle that, when added to 70°, makes 180°. Therefore, the supplement of 70° = 110°.

The supplement of $x^\circ = (180 - x)^\circ$

Further Angles

angles on a straight line

angles on a straight line add up to 180°.

 $1 \quad x + 100 + 30 = 180$

(angles on a straight line) $\therefore x = 50$

Vertically opposite angles

Lines AB and CD intersect at X.

When two lines intersect, two pairs of ertically opposite angles are formed. Vertically opposite angles are equal.

 \angle CXA and \angle DXB are vertically opposite. Also, \angle SXC and \angle AXD are vertically opposite.

- 1 Name the angle vertically opposite to $\angle BXD$.
- 2 If $\angle AXC = 112^\circ$, find the size of $\angle BXD$.
- **3** Does $\angle CXB = \angle DXA$? Why?
- 1 The angle vertically opposite to $\angle BXD$ is $\angle AXC$.
- 2 $\angle BXD = \angle AXC$ (because they are vertically opposite) $\therefore \angle BXD = 112^{\circ}$
- 3 $\angle CXB = \angle DXA$ because they are vertically opposite angles (and vertically opposite angles are equal).

70°

1 x = 70 (vertically opposite angles) y + 70 = 180 (supplementary angles) $\therefore y = 110, z = 110$ Angles at a point

$$1 \quad x + 100 + 70 + 90 = 360$$

(angles at a point)

 $\therefore x + 260 = 360$ *x* = 100

corresponding angles are equal 2 Z angles alternate angles are equal. 3 to 180°. For Example C

1

F angles—

- 1 In the figure, AB // CD and AB and CD are cut by the transversal FG:
 - **a** Which angle is corresponding to ∠HID?

Parallel Lines

When a pair of parallel lines is cut by a transversal, three types of special angles are formed: F angles, Z angles and C angles.

- **b** Which angle is alternate to \angle HID?
- **c** Which angle is co-interior to \angle HID?
- **d** If \angle HID = 70°, find the size of \angle BHI.

AB // CD and \angle GIC = 50°. Find the size of \angle BHI.

AB // CD. Find the obtuse angle \angle CEA.

1 a The angle corresponding to ∠HID is ∠GHB:

Remember that corresponding angles or alternate angles are only equal when the lines are parallel.

b The angle alternate to \angle HID is \angle IHA:

c The angle co-interior to \angle HID is \angle BHI:

d

 $\angle BHI + \angle HID = 180^{\circ}$ (co-interior angles, AB // CD) $\therefore \angle BHI + 70^{\circ} = 180^{\circ}$ $\angle BHI = 110^{\circ}$ Remember, co-interior angles

Remember, co-interior angles are only supplementary when the lines are parallel.

Chapter 9—Geometry 179

- **2 a** *x* = 73 (corresponding angles in parallel lines)
 - **b** y = 112 (alternate angles in parallel lines)
 - c x + 105 = 180(co-interior angles in parallel lines) $\therefore x = 75$

3

b

 \angle HID = 50° (vertically opposite to \angle GIC) \angle BHI = 130° (co-interior to \angle HID, and AB // CD)

Construct a line MN through E that is parallel to AB. Since MN // AB and AB // CD, then MN // CD.

 $\therefore \angle$ MEA = 65° (alternate to \angle BAE, AB // MN)

Also, $\angle CEM = 40^{\circ}$ (alternate to $\angle ECD$, CD // MN)

 $\therefore \angle CEA = (65 + 40)^{\circ} = 105^{\circ}$

Conditions for Parallel Lines

Two straight lines are parallel if a transversal makes with them:

- i A pair of equal corresponding angles, or
- ii A pair of equal alternate angles, or
- iii A pair of supplementary co-interior angles.

Also, two straight lines are parallel if they are both parallel to a third line.

1 Is AB // CD?

2 Are the lines XY and PQ parallel?

- 1 AB is not parallel to CD, because the pair of alternate angles are not equal.
- 2 XY and PQ are parallel, because the pair of co-interior angles are supplementary.

That is, $130^{\circ} + 50^{\circ} = 180^{\circ}$.

Triangles

Properties of Triangles

Angle sum of a triangle

The angle sum of any triangle is 180°.

and the second s

The base angles of an isosceles triangle are equal.

 $\square \angle ABC = \angle BCA$

and triangle

- 1 x + 71 + 56 = 180 (angle sum of △ABC) x + 127 = 180x = 53
- 2 ∠NPM = 50° (base angles of isosceles △MNP) ∴ x + 50 + 50 = 180(angle sum of △MNP) ∴ x = 80
- 3 $\angle ABC = \angle BCA$ (base angles of isosceles $\triangle ABC$) x + x + 70 = 180 (angle sum of $\triangle ABC$) 2x = 110

Exterior Angle of a Triangle (exterior = outside)

∴ *x* = 55

The exterior angle of any triangle equals the sum of the two opposite interior angles:

Note: The opposite interior angles are the two that are **not** adjacent to the exterior angle.

- 1 x = 65 + 40 (exterior \angle of \triangle result) $\therefore x = 105$
- 2 x + 43 = 110 (exterior \angle of \triangle result) $\therefore x = 110 - 43$ $\therefore x = 67$

Quadrilaterals

Angle Sum of Quadrilaterals

The angle sum of any quadrilateral is 360°.

That is: $\begin{bmatrix} a+b+c+d=360 \end{bmatrix}$

Properties of Special Quadrilaterals

A **trapezium** is a quadrilateral with one pair of opposite sides parallel:

A **parallelogram** is a quadrilateral with both pairs of opposite sides parallel and equal:

A **rhombus** is a quadrilateral with both pairs of opposite sides parallel and all sides equal:

182 *Excel* Mathematics Study Guide Year 7

A **rectangle** is a quadrilateral with both pairs of opposite sides parallel and equal, and all four angles are right angles:

A **square** is a quadrilateral with all four sides equal and all four angles are right angles:

Kite

A **kite** is a quadrilateral with two pairs of adjacent sides equal:

Family of Quadrilaterals

For Example

Find x, giving reasons for your answer:

■ x + 130 + 80 + 70 = 360(Angle sum of quadrilateral ABCD.) $\therefore x + 280 = 360$ x = 80 1 Find *x*, giving reasons for your answer:

1 $\angle ABC + 85^\circ + 80^\circ + 110^\circ = 360^\circ$ (Angle sum of quadrilateral ABCD.) $\angle ABC + 275^\circ = 360^\circ$ $\angle ABC = 85^\circ$

$$\therefore x + 85 = 180$$

(\angle CBE is supplementary to \angle ABC.)

∴ *x* = 95